‘THOMSON REUTERS SOLUTIONS FOR SUPPORTING THE JOURNAL SELECTION PROCESS & RESEARCH PUBLICATION PRACTICES FOR RESEARCH PERFORMANCE EVALUATION IN ROMANIA’

Dr. Evangelia Lipitakis
Evangelia.lipitakis@thomsonreuters.com
Research Analytics Consultant

You are the answer.
Today’s Agenda

- The Importance of Selectivity
- WoS Journal Selection Criteria
- What’s next? Data and Indexation Process
- Journal Ranking Indicators
- How to use the Journal Impact Factor wisely
- Beyond the Journal Impact Factor: Other metrics?
- Tools to monitor journal research performance and inform journal collection development
- Target the most relevant journal for your research
- Q&A
SUPPORTING SCIENTIFIC & SCHOLARLY RESEARCH

WEB OF SCIENCE™

SEARCH & DISCOVER
THE HIGHEST QUALITY LITERATURE.
THE MOST REPUTABLE SOURCE.

AUTHOR & COLLABORATE
INCREASE COLLABORATION.
KEEP RESEARCH ON THE FAST TRACK.

ANALYZE & EVALUATE
EVALUATE PERFORMANCE.
DEFINE STRATEGIC DIRECTION.

PUBLISH & PRESENT
ACCELERATE TIME TO MARKET.
EXPAND YOUR INFLUENCE.

ENDNOTE®

InCites™
Calibrate Your Strategic Research Vision

Journal Citation Reports®

Essential Science Indicators™

RESEARCHERID

THOMSON REUTERS

China
Researchers: 409011

CONVERIS

Austria

FORschung und Innovation
EUGENE GARFIELD’S “ASSOCIATION OF IDEAS INDEX”

CITATION NETWORK OF EARLY DNA ARTICLES

1958
1960
1961
1964
1965
1966
1967
Garfield’s Law of Concentration

40% of the journals represent:
• 80% of the publications
• 92% of cited papers

4% of the journals represent:
• 30% of the publications
• 51% of cited papers

Approx. 3,000 journals evaluated annually in Web of Science
– 10-12% accepted
JOURNALS MUST BE SELECTED

200+ papers will be read by a researcher in a year, on average

0.4% of journals (50,000+) on average a scientist is capable of reading in a year.

Selectivity is the key

DELIVERING THE “200 ARTICLES”

THE SEA OF SCHOLARLY INFORMATION

10 - 12% Accepted for flagship indexes
62% Accepted for ESCI

4000+

THE CORE OF SCIENCE
To evaluate and select the best scholarly content available today for coverage in Web of Science.

As a result, the Web of Science is known as the worldwide source for top tier scholarly research published in the best international and regional journals.

Provide the worldwide publishing community with objective standards useful in building world-class publications according to the highest ethical standards.

Thomson Reuters has built lasting partnerships with the global scholarly publishing community in order to improve the quality of scholarly communication.
Unique Editorial Process

Uniformity of judgement
Continuous monitoring of current content

16 Full Time Editors
No one of the editors publish
No one of the editors edit a journal

Bi-weekly meetings
Thomson Reuters employees
12 main languages covered with fluency

No conflict of interest

Around 150 years of experience in the role
Advanced degrees
Full time job

Source: Thomson Reuters internal
Selectivity is the key

A complex process: no one factor is considered in isolation.

Each journal is evaluated upon its own merits with an objective unbiased approach.

Core coverage in the Web of Science is not static; covered titles are monitored to ensure they maintain performance.
Journal selection criteria for WEB OF SCIENCE:

Journal Publishing Standards
- Peer review
- Ethical publishing practices
- Meets technical requirements (XML / PDF)
- English-language bibliographic information
- Timeliness of publication
- International editorial conventions

Editorial Content
- Has a scholarly audience searched for or requested this content?
- How does this journal compare with covered journals of similar scope?
- Is this subject already well covered?
- Will this journal enrich WoS with novel content?

International Diversity: Authors, EAB
- Does this journal target an international audience or specifically a regional audience?
- Is international representation among authors and board members at an appropriate level for such a journal?

Citation Analysis
- **Total Citations:** Integration of the journal into the literature over time
- **Impact Factor:** Recent citation activity
- **Author, EAB citations in the literature.**
 - Citation metrics have meaning only in the editorial context appropriate for the journal.

Red = ESCI minimum requirements
Journal selection for WEB OF SCIENCE: two phases

PHASE 1

Accelerated evaluation for ESCI - content must exhibit:

- Peer Review
- Ethical Publishing Practices
- High Interest to a scholarly community (Scholars, researchers, funding bodies, research administrators)
- The ability to meet our technical requirements

PHASE 2

Full assessment – meet ALL criteria SCIE, SSCI, A&HCI (Same as today):

Highest Journal Publishing Standards
- Timeliness
- Globally Accepted Editorial conventions
- English Bibliographic Information
- Peer Review
- Strong Editorial board
- Ethical Publishing Practices
- Regional Diversity and Global Collaboration
 - Appropriate Diversity of Editorial Board
 - Appropriate Diversity of Authorship
- Significant Global Impact relative to its field (citation or novel contribution)
- Consistently high interest to the global scholarly community (Scholars, researchers, funding bodies, research administrators)
- The ability to meet our technical requirements

http://ip-science.thomsonreuters.com/info/journalsubmission-front/
Why is a journal accepted?
Why is a journal rejected or dropped?
INDEXING
CONSISTENCY IS THE KEY TO VALIDITY

➢ Consistent indexing for complete analysis
 ➢ Cover-to-cover indexing
 ➢ All author names
 ➢ All author addresses (affiliations)
 ➢ Subject Area Classification
 ➢ Open Access
 ➢ Funding Agencies & Grant Numbers (Funding text)
Cover to Cover Indexing is essential for producing reliable Journal Ranking Indicators

“How can you provide meaningful Journal metrics (Impact Factor, SNIP, etc.) if you do not index the entire journal?”
Different Levels of Metadata Quality
All Author Names, All Addresses

NO AGREGATION OF THIRD PARTY CONTENT, ALL MATERIALS ARE INDEXED DIRECTLY FROM THE SOURCE (Publishers)

This also strengthens the consistency of our metadata capture, Web of Science does not inherit the weaknesses (e.g. missing affiliations in Medline) or third party databases.

Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study.

By: Hertog, M G; Kromhout, D; Aravanis, C; Blackburn, H; Buzina, R; Fidanza, F; Giampaoli, S; Jansen, A; Menotti, A; Nedeljkovic, S

Abstract
OBJECTIVE: To determine whether flavonoid intake explains differences in mortality rates from chronic diseases between populations.

Author Information
Address: Department of Chronic Diseases and Environmental Epidemiology, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands.

Medline/Pubmed record: One Address
FLAVONOID INTAKE AND LONG-TERM RISK OF CORONARY-HEART-DISEASE AND CANCER IN THE 7 COUNTRIES STUDY

By: HERTOG, MGL (HERTOG, MGL); KROMHOUT, D (KROMHOUT, D); ARAVANIS, C (ARAVANIS, C); BLACKBURN, H (BLACKBURN, H); BUZINA, R (BUZINA, R); FIDANZA, F (FIDANZA, F); GIAMPOLI, S (GIAMPOLI, S); JANSEN, A (JANSEN, A); MENOTTI, A (MENOTTI, A); NEDELJKOVIC, S (NEDELJKOVIC, S); PEKKARINEN, M (PEKKARINEN, M); SIMIC, BS (SIMIC, BS); TOSHIMA, H (TOSHIMA, H); FESKENS, EJM (FESKENS, EJM); HOLLMAN, PCH (HOLLMAN, PCH); KATAN, MB (KATAN, MB)...Less

ARCHIVES OF INTERNAL MEDICINE
Volume: 155 Issue: 4 Pages: 301-308
DOI: 10.1001/archinte.155.4.301
Published: FEB 27 1995
View Journal Information

Author Information

Addresses:

1. NATL INST PUBL HLTH & ENVIRONM PROTECT, DEPT CHRON DIS & ENVIRONM EPIDEMIOL, DIV PUBL HLTH RES, 3720 BA BILTHOVEN, NETHERLANDS
2. GREEK SOC STUDY ATHEROSCLEROSIS, ATHENS, GREECE
3. MED CTR ATHENS, ATHENS, GREECE
4. UNIV MINNESOTA, SCH PUBL HLTH, DIV EPIDEMIOL, MINNEAPOLIS, MN 55455
5. INST DIABET ENDOCRINOL & METAB DIS, ZAGREB, CROATIA
6. UNIV PERUGIA, INST FOOD SCI & NUTR, I-06100 PERUGIA, ITALY
7. NATL INST HLTH, EPIDEMIOL & BIOSTAT LAB, ROME, ITALY
8. UNIV BELGRADE, FAC MED, INTERNAL CLIN B, BELGRADE
9. UNIV BELGRADE, FAC MED, INST HYG, BELGRADE

Web of Science Core Collection record: All Addresses
We communicate rules to institutions

They validate/modify/complete the rules

Rules are updated and applied to more than a century of publication activity

Unification rules sets are built in complete transparency, using internal and external expertise

Different Levels of Metadata Quality
Enhanced Organizations Names
Different Levels of Metadata Quality
All Author Names, All Addresses

Without consistency, no meaningful data analysis is possible.

Author-Affiliation Link since 2008
Different Levels of Metadata Quality
Funding Acknowledgements since 2008

Currently working towards unification of funders

700 funders unified in Incites

(European Commission, NASA, HEFCE, NERC, RCUK, EPSRC, Wellcome Trust, Leverhulme Trust WHO, European Cooperation in Science and Technology (COST), Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT), Deutsche Forschungsgemeinschaft, Research Council of Norway, Dutch Cancer Society, etc)

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Global Atmospheric Chemistry (IGAC) project</td>
<td>NA100AR432014B 2035</td>
</tr>
<tr>
<td>Climate Program Office of the National Oceanic and Atmospheric Administration (NOAA)</td>
<td>RD-83053401</td>
</tr>
<tr>
<td>Radiation Sciences Program of the National Aeronautic and Space Administration (NASA)</td>
<td>RD-83053401</td>
</tr>
<tr>
<td>CSC</td>
<td>ATM 08-52775</td>
</tr>
<tr>
<td>Tully Graphics</td>
<td>DE-SC0005889 DE-AC06-76RL 1830</td>
</tr>
<tr>
<td>IGAC via the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA</td>
<td></td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>GA01101</td>
</tr>
<tr>
<td>NASA</td>
<td>34684</td>
</tr>
<tr>
<td>NSF</td>
<td></td>
</tr>
<tr>
<td>DOE</td>
<td></td>
</tr>
<tr>
<td>Royal Society Wolfson Research Merit award</td>
<td></td>
</tr>
<tr>
<td>Joint DECC/Defra Met Office Hadley Centre Climate Programme</td>
<td></td>
</tr>
<tr>
<td>U.S. Department of Energy (DOE), Office of Science, Scientific Discovery through Advanced Computing (SciDAC) program</td>
<td></td>
</tr>
<tr>
<td>DOE Decadal and Regional Climate Prediction using Earth System Models (EaSM) program</td>
<td></td>
</tr>
<tr>
<td>Ministry of Education, Culture, Sports, Science, and Technology (MEXT)</td>
<td></td>
</tr>
<tr>
<td>Japan Science and Technology Agency (JST)</td>
<td></td>
</tr>
<tr>
<td>global environment research fund of the Japanese Ministry of the Environment</td>
<td>A-1101</td>
</tr>
<tr>
<td>EUCARPI project (EU-FP6)</td>
<td></td>
</tr>
<tr>
<td>U.S. National Science Foundation</td>
<td></td>
</tr>
<tr>
<td>European Union Seventh Research Framework Programme (MACC project)</td>
<td>218793</td>
</tr>
<tr>
<td>U.S. NSF</td>
<td>ARC-06-12636</td>
</tr>
<tr>
<td>National Basic Research Program of China</td>
<td>2011CB403405</td>
</tr>
</tbody>
</table>

This assessment is a contribution of the RGP-EAG/IPRS/SPARC Atmospheric Chemistry and Climate Initiative (AC&C). The authors acknowledge financial and technical support from the International Global Atmospheric Chemistry (IGAC) project (http://igac.jasw-research.org/index.php). C. Koblentsky of the Climate Program Office of the National Oceanic and Atmospheric Administration (NOAA), H. Maring of the Radiation Sciences Program of the National Aeronautic and Space Administration (NASA), Rose Kendall of CSC, and Beth Tully of Tully Graphics. IGAC funding for this project is via the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10AR432014B. Contribution No. 2035. The authors are grateful to Ray Mirinnes and the International Council on Clean Transportation (ICCT) and Colleen Wolfson of the Climate Works Foundation for encouragement to undertake this effort. The authors wish to thank the AeroCom modeling community and the AERONET data providers for their great help in providing basic data sets, further analyzed here. Olivier Boucher is thanked for his substantial contribution to section 9 and his careful review and subsequent discussion with the author team on the entire manuscript. We also thank N. Reimer of the University of Illinois for particle-resolved simulation results in Figures 5, 7. Mathew of Cornell University for dust fields in Figures 12, and D. M. Winker of NASA for providing the CALIPSO data in Figure 16. A. Heil is thanked for providing information on biomass burn emissions and M. O. Andreae for providing updates of his biomass burning emission factor compilation. E. Baum, J. Bachmann, R. Mirinnes, K. Ram, V. Ramanathan, and D. Zaelke are thanked for reading and providing comments that improved the document. T. C. Bond acknowledges support for related work under U.S. EPA RD-83653401, NASA RD-83663461, NSF ATM 08-52775, and DOE DE-SC0006889. Pleas Forster acknowledges support from a Royal Society Wolfson Research Merit award. N. Bellouin was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA10101). S. Ghani was supported by the U.S. Department of Energy (DOE), Office of Science, Scientific Discovery through Advanced Computing (SciDAC) program, and the DOE Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RL 1830. Y. Kondo was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), strategic international cooperative program of Japan Science and Technology Agency (JST), and the global environment research fund of the Japanese Ministry of the Environment (A-1101). For P. K. Quirke's work, this is NOAA PMEL contribution no. 3766. M. Schulz received funding support through the EUCARPI project (EU-FP6 Contract 34504). M. Z. Jacobson received funding from the U.S. National Science Foundation. J. W. Kaiser was supported by the European Union Seventh Framework Programme (MACC project, contract number 216795). S. G. Warren acknowledges support from U.S. NSF grant ARC-06-12636. M. Zhang was funded by the National Basic Research Program of China (2011CB403405). The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.
Different Levels of Metadata Quality

Funding Acknowledgements since 2008

Sources of funding for Imperial College London: how do funded projects perform?

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Web of Science Documents</th>
<th>Times Cited</th>
<th>% Docs Cited</th>
<th>Category Normalized Citation Impact</th>
<th>% Documents in Top 10%</th>
<th>Highly Cited Papers</th>
<th>% International Collaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering & Physical Sciences Research Council (EPSRC)</td>
<td>1</td>
<td>5,061</td>
<td>85,210</td>
<td>85.4%</td>
<td>1.73</td>
<td>21.4%</td>
<td>135</td>
<td>44.89%</td>
</tr>
<tr>
<td>Medical Research Council</td>
<td>2</td>
<td>3,799</td>
<td>106,896</td>
<td>90.16%</td>
<td>2.69</td>
<td>29.72%</td>
<td>204</td>
<td>56.78%</td>
</tr>
<tr>
<td>Wellcome Trust Sanger Institute</td>
<td>3</td>
<td>3,488</td>
<td>96,436</td>
<td>90.17%</td>
<td>2.48</td>
<td>28.57%</td>
<td>168</td>
<td>61.56%</td>
</tr>
<tr>
<td>European Union (EU)</td>
<td>4</td>
<td>2,518</td>
<td>73,730</td>
<td>90.11%</td>
<td>2.69</td>
<td>30.18%</td>
<td>158</td>
<td>81.22%</td>
</tr>
<tr>
<td>National Science Foundation (NSF)</td>
<td>5</td>
<td>2,184</td>
<td>68,968</td>
<td>90.43%</td>
<td>3.11</td>
<td>32.33%</td>
<td>166</td>
<td>96.61%</td>
</tr>
</tbody>
</table>

Which are the main funding bodies in the area of Endocrinology & Metabolism?

<table>
<thead>
<tr>
<th>Name</th>
<th>Rank</th>
<th>Web of Science Documents</th>
<th>Times Cited</th>
<th>% Docs Cited</th>
<th>Category Normalized Citation Impact</th>
<th>% Documents in Top 10%</th>
<th>Highly Cited Papers</th>
<th>% International Collaborations</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Institutes of Health (NIH) - USA</td>
<td>1</td>
<td>14,968</td>
<td>306,513</td>
<td>91.86%</td>
<td>1.51</td>
<td>18.26%</td>
<td>311</td>
<td>28.48%</td>
</tr>
<tr>
<td>National Natural Science Foundation of China</td>
<td>2</td>
<td>4,497</td>
<td>35,502</td>
<td>78.83%</td>
<td>0.92</td>
<td>8.43%</td>
<td>15</td>
<td>24.96%</td>
</tr>
<tr>
<td>Canadian Institutes of Health Research</td>
<td>3</td>
<td>2,632</td>
<td>43,710</td>
<td>89.74%</td>
<td>1.33</td>
<td>16.11%</td>
<td>40</td>
<td>36.78%</td>
</tr>
<tr>
<td>NIH National Institute of Diabetes & Digestive & Kidney Disease</td>
<td>4</td>
<td>2,566</td>
<td>56,956</td>
<td>89.67%</td>
<td>1.76</td>
<td>20.8%</td>
<td>81</td>
<td>27.2%</td>
</tr>
<tr>
<td>Novo Nordisk</td>
<td>5</td>
<td>2,390</td>
<td>50,360</td>
<td>89%</td>
<td>1.77</td>
<td>19.92%</td>
<td>102</td>
<td>43.6%</td>
</tr>
</tbody>
</table>
Different Levels of Metadata Quality

Open Access Journals

13% of titles in WOS Core Collection are Open Access

% Open Access Growth in Web of Science Core Collection

2004: 2.1
2005: 2.5
2006: 2.8
2007: 3.7
2008: 4.8
2009: 5.3
2010: 6.4
2011: 7.0
2012: 7.7
2013: 8.6
2014: 9.7
2015: 12.4
THE JOURNAL IMPACT FACTOR

• The journal impact factor is a measure of the frequency with which the "average article" in a journal has been cited in a particular year.

• The impact factor will help you evaluate a journal's relative importance, especially when you compare it to others in the same field.

• Ranking journals within the same field can help:
 – To spot new journals increasing their impact
 – To learn evolving contents of existing journals

• One common misuse of the IF is to evaluate papers, or people
INTRODUCTION TO THE IMPACT FACTOR RETROSPECTIVE ANALYSIS

- Source paper – published in 2015
- Cited reference – published in 2014 or 2013

2015 Impact Factor
CALCULATING 2015 IMPACT FACTOR FOR A JOURNAL

Transparency of the JIF calculations

Journal Impact Factor

Cites in 2015 to items published in: 2014 = 305
2013 = 287
Sum: 593

Number of items published in: 2014 = 305
2013 = 287
Sum: 593

Calculation:

\[
\frac{\text{Cites to recent items}}{\text{Number of recent items}} = \frac{567}{593} = 0.956
\]
CALCULATING 2015 IMPACT FACTOR FOR A JOURNAL

Data visualizations helping you to understand the evolution of JIF
CALCULATING 2015 IMPACT FACTOR FOR A JOURNAL

Full access to the document lists that are considered for the calculation of the JIF

<table>
<thead>
<tr>
<th>Document Type:</th>
<th>Articles And Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A Compan</td>
<td>Analysis of Acer platanoides and Acer pseudoplatanus Seed Oils</td>
</tr>
<tr>
<td>By: Oprea, Eliza; Ancuceanu, Robert; Dociu, Niculina; Morosan, Elena; Hovanet, Mirela-Viorica; Dinu, Mihaela</td>
<td></td>
</tr>
<tr>
<td>Source: REVISTA DE CHIMIE</td>
<td></td>
</tr>
<tr>
<td>Field: CHEMISTRY, MULTIDISCIPLINARY, ENGINEERING, CHEMICAL</td>
<td></td>
</tr>
<tr>
<td>Document Type(s): Article</td>
<td></td>
</tr>
</tbody>
</table>

| 2 A HPLC Method for the Determination of Bisoprolol in Tablets and its Application to a Bioequivalence Study |
| By: Agoraei, Luminita; Bibire, Nela; Panaitie, Alina-Diana; Spac, Florin Adrian; Veriu, Madalina; Tantar, Gadiola; Apostu, Mihai |
| Source: REVISTA DE CHIMIE |
| Field: CHEMISTRY, MULTIDISCIPLINARY, ENGINEERING, CHEMICAL |
| Document Type(s): Article |

| 3 A New Class 4-(Hydroxyaryl)-1,3-Dithiolium Chlorides |
| By: Chirita, Paul; Sarbuc, Laura Gabriela; Earar, Kamel; Hrib, Cristian George; Sandu, Ion; Lungu, Necula C |
| Source: REVISTA DE CHIMIE |
| Field: CHEMISTRY, MULTIDISCIPLINARY, ENGINEERING, CHEMICAL |
| Document Type(s): Article |

| 4 A New High Performance Liquid Chromatographic Analysis Method for Ciprofloxacin |
| By: Vlase, Aurel; Veriu, Madalina; Panaitie, Alina Diana; Vlase, Cristina Victorina; Uncu, Livia; Agoraei, Luminita; Bibire, Nela |
| Source: REVISTA DE CHIMIE |
| Field: CHEMISTRY, MULTIDISCIPLINARY, ENGINEERING, CHEMICAL |
| Document Type(s): Article |
Benchmarking journals in a specific category

<table>
<thead>
<tr>
<th>Category</th>
<th>Edition</th>
<th>#Journals</th>
<th>Total Cites</th>
<th>Median Impact Factor</th>
<th>Aggregate Impact Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MULTIDISCIPLINARY SCIENCES</td>
<td>SCIE</td>
<td>55</td>
<td>2,079,971</td>
<td>0.786</td>
<td>5.882</td>
</tr>
<tr>
<td>2 CELL BIOLOGY</td>
<td>SCIE</td>
<td>185</td>
<td>1,784,263</td>
<td>3.333</td>
<td>5.815</td>
</tr>
<tr>
<td>3 CHEMISTRY, MULTIDISCIPLINARY</td>
<td>SCIE</td>
<td>148</td>
<td>2,195,260</td>
<td>1.401</td>
<td>5.222</td>
</tr>
<tr>
<td>4 CELL & TISSUE ENGINEERING</td>
<td>SCIE</td>
<td>18</td>
<td>76,359</td>
<td>3.535</td>
<td>4.940</td>
</tr>
<tr>
<td>5 NANOSCIENCE & NANO TECHNOLOGY</td>
<td>SCIE</td>
<td>73</td>
<td>799,992</td>
<td>1.768</td>
<td>4.902</td>
</tr>
<tr>
<td>6 NEUROIMAGING</td>
<td>SCIE</td>
<td>13</td>
<td>118,110</td>
<td>2.374</td>
<td>4.732</td>
</tr>
<tr>
<td>141 MANAGEMENT</td>
<td>SSCI</td>
<td>172</td>
<td>356,261</td>
<td>1.160</td>
<td>1.699</td>
</tr>
<tr>
<td>142 EDUCATION, SPECIAL</td>
<td>SSCI</td>
<td>37</td>
<td>26,278</td>
<td>1.013</td>
<td>1.694</td>
</tr>
<tr>
<td>142 PALEONTOLOGY</td>
<td>SCIE</td>
<td>48</td>
<td>77,218</td>
<td>1.168</td>
<td>1.694</td>
</tr>
<tr>
<td>144 ENGINEERING, CIVIL</td>
<td>SCIE</td>
<td>124</td>
<td>277,434</td>
<td>0.956</td>
<td>1.670</td>
</tr>
<tr>
<td>145 BUSINESS</td>
<td>SSCI</td>
<td>110</td>
<td>257,996</td>
<td>1.388</td>
<td>1.658</td>
</tr>
</tbody>
</table>

Journal rankings and comparisons are meaningful **only within** each category - **not between** categories or domains.
Citations accumulate slower for Social Sciences journals across time thus the 5 Year Impact Factor is often higher than its 2-Year counterpart.

<table>
<thead>
<tr>
<th>Full Journal Title</th>
<th>Total Cites</th>
<th>Journal Impact Factor</th>
<th>5 Year Impact Factor</th>
<th>Immediacy Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Annual Review of Psychology</td>
<td>14,292</td>
<td>19.085</td>
<td>24.025</td>
<td>5.848</td>
</tr>
<tr>
<td>2 TRENDS IN COGNITIVE SCIENCES</td>
<td>21,382</td>
<td>17.850</td>
<td>23.872</td>
<td>2.444</td>
</tr>
<tr>
<td>3 BEHAVIORAL AND BRAIN SCIENCES</td>
<td>7,873</td>
<td>20.415</td>
<td>23.842</td>
<td>1.700</td>
</tr>
<tr>
<td>4 PSYCHOLOGICAL BULLETIN</td>
<td>39,345</td>
<td>14.839</td>
<td>21.971</td>
<td>1.850</td>
</tr>
<tr>
<td>5 Nature Climate Change</td>
<td>9,526</td>
<td>17.184</td>
<td>19.257</td>
<td>4.287</td>
</tr>
<tr>
<td>6 Annual Review of Clinical Psychology</td>
<td>3,653</td>
<td>12.214</td>
<td>15.462</td>
<td>2.438</td>
</tr>
<tr>
<td>7 AMERICAN JOURNAL OF PSYCHIATRY</td>
<td>41,752</td>
<td>13.505</td>
<td>15.298</td>
<td>3.402</td>
</tr>
<tr>
<td>8 World Psychiatry</td>
<td>2,410</td>
<td>20.205</td>
<td>15.214</td>
<td>5.143</td>
</tr>
<tr>
<td>9 Lancet Global Health</td>
<td>1,379</td>
<td>14.722</td>
<td>14.833</td>
<td>5.228</td>
</tr>
<tr>
<td>10 JAMA Psychiatry</td>
<td>4,034</td>
<td>14.417</td>
<td>14.441</td>
<td>3.720</td>
</tr>
</tbody>
</table>
The picture is different for the ‘Clinical Medicine’ category where we can see a shorter citation lag.
DISPARITIES IN CATEGORIES

APPLIED SURFACE SCIENCE

Impact Factor
3.15 2.982
2015 5 year

<table>
<thead>
<tr>
<th>JCR® Category</th>
<th>Rank in Category</th>
<th>Quartile in Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMISTRY, PHYSICAL</td>
<td>49 of 144</td>
<td>Q2</td>
</tr>
<tr>
<td>MATERIALS SCIENCE, COATINGS & FILMS</td>
<td>1 of 18</td>
<td>Q1</td>
</tr>
<tr>
<td>PHYSICS, APPLIED</td>
<td>27 of 145</td>
<td>Q1</td>
</tr>
<tr>
<td>PHYSICS, CONDENSED MATTER</td>
<td>17 of 67</td>
<td>Q2</td>
</tr>
</tbody>
</table>

Data from the 2015 edition of Journal Citation Reports®
DISPARITIES IN CATEGORIES – CATEGORY RANKINGS, JIF QUARTILES & PERCENTILES

<table>
<thead>
<tr>
<th>Year</th>
<th>Rank</th>
<th>Quartile</th>
<th>JIF Percentile</th>
<th>Year</th>
<th>Rank</th>
<th>Quartile</th>
<th>JIF Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>49/144</td>
<td>Q2</td>
<td>66.319</td>
<td>2015</td>
<td>1/18</td>
<td>Q1</td>
<td>97.222</td>
</tr>
<tr>
<td>2014</td>
<td>51/139</td>
<td>Q2</td>
<td>63.669</td>
<td>2014</td>
<td>2/17</td>
<td>Q1</td>
<td>91.176</td>
</tr>
<tr>
<td>2013</td>
<td>56/136</td>
<td>Q2</td>
<td>59.191</td>
<td>2013</td>
<td>2/18</td>
<td>Q1</td>
<td>91.667</td>
</tr>
<tr>
<td>2012</td>
<td>69/135</td>
<td>Q3</td>
<td>49.259</td>
<td>2012</td>
<td>2/17</td>
<td>Q1</td>
<td>91.176</td>
</tr>
<tr>
<td>2011</td>
<td>66/134</td>
<td>Q2</td>
<td>51.119</td>
<td>2011</td>
<td>2/18</td>
<td>Q1</td>
<td>91.667</td>
</tr>
<tr>
<td>2010</td>
<td>75/127</td>
<td>Q3</td>
<td>41.339</td>
<td>2010</td>
<td>7/18</td>
<td>Q2</td>
<td>63.889</td>
</tr>
<tr>
<td>2009</td>
<td>73/121</td>
<td>Q3</td>
<td>40.083</td>
<td>2009</td>
<td>6/17</td>
<td>Q2</td>
<td>67.647</td>
</tr>
<tr>
<td>2008</td>
<td>67/113</td>
<td>Q3</td>
<td>41.150</td>
<td>2008</td>
<td>4/16</td>
<td>Q1</td>
<td>78.125</td>
</tr>
<tr>
<td>2007</td>
<td>67/111</td>
<td>Q3</td>
<td>40.090</td>
<td>2007</td>
<td>6/18</td>
<td>Q2</td>
<td>69.444</td>
</tr>
<tr>
<td>2006</td>
<td>65/108</td>
<td>Q3</td>
<td>40.278</td>
<td>2006</td>
<td>6/16</td>
<td>Q2</td>
<td>65.625</td>
</tr>
<tr>
<td>2005</td>
<td>71/111</td>
<td>Q3</td>
<td>36.486</td>
<td>2005</td>
<td>7/19</td>
<td>Q2</td>
<td>65.789</td>
</tr>
<tr>
<td>2004</td>
<td>58/108</td>
<td>Q3</td>
<td>46.759</td>
<td>2004</td>
<td>5/19</td>
<td>Q2</td>
<td>76.316</td>
</tr>
<tr>
<td>2003</td>
<td>56/101</td>
<td>Q3</td>
<td>45.050</td>
<td>2003</td>
<td>6/16</td>
<td>Q2</td>
<td>65.625</td>
</tr>
<tr>
<td>2002</td>
<td>53/95</td>
<td>Q3</td>
<td>44.737</td>
<td>2002</td>
<td>4/17</td>
<td>Q1</td>
<td>79.412</td>
</tr>
<tr>
<td>2001</td>
<td>58/93</td>
<td>Q3</td>
<td>38.172</td>
<td>2001</td>
<td>5/16</td>
<td>Q2</td>
<td>71.875</td>
</tr>
</tbody>
</table>

Journal rankings and comparisons are meaningful only within each category - not between categories or domains.
SELF CITATIONS

- REV BRAS FARMACOGN: Regional coverage Expansion
 - Regional coverage Expansion
 - First Journal Impact Factor in 2009
 3.462

Journal was suppressed from 2010 & 2011 JCR
Journal Self-Citation
Suppression of individual journals

What the suppressed Journal metrics would look like

Data considered:
- Total citations (TC)
- Journal Impact Factor (JIF)
- Rank in category
- % of journal self-citations in Journal Impact Factor numerator
- Proportional increase in Journal Impact Factor with/without journal self-citations
- Effect of journal self-citations on rank in category by Journal Impact Factor

Journals in bottom 10% ranking by TC and/or by JIF are not suppressed

Suppressed journals represent extreme outliers in citation behavior

Science Edition and Social Sciences Edition are analyzed separately

Journals are suppressed for one year, and re-evaluated with the next year’s data.

<table>
<thead>
<tr>
<th>Total Cites</th>
<th>2790</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cites to Years Used in Impact Factor Calculation</td>
<td>1619</td>
</tr>
<tr>
<td>Impact Factor</td>
<td>10.722</td>
</tr>
<tr>
<td>Self Cites</td>
<td>1717 (61% of 2790)</td>
</tr>
<tr>
<td>Self Cites to Years Used in Impact Factor Calculation</td>
<td>1308 (80% of 1619)</td>
</tr>
<tr>
<td>Impact Factor without Self Cites</td>
<td>2.060</td>
</tr>
</tbody>
</table>
SELF CITATIONS

Most journals have self-citation rates of less than or equal to **15%**

Source: *JCR Science Edition (2010)*

- Excessive self-citation weakens the integrity of the journal’s Impact Factor

- Journals with *excessive self-citation* may be *suppressed* from *Journal Citation Reports* until the problem is corrected

More information on journal suppression is available at: http://wokinfo.com/media/pdf/jcr-suppression.pdf
SPECIAL CASE: MUTUAL CITATIONS

Journal self-citations are concentrated in Journal Impact Factor years

High-value citation partners show extreme concentration
SPECIAL CASE: MUTUAL CITATIONS

Stem cells have the potential to rejuvenate regenerative medicine research

By: Eve, DJ (Eve, David J.)¹; Fillmore, RW (Fillmore, Randolph W.)¹; Borlongan, CV (Borlongan, Consuelo V.)¹; Sanberg, PR (Sanberg, Paul R.)¹

MEDICAL SCIENCE MONITOR
Volume: 16 Issue: 10 Pages: RA157-RA217
Published: 2010
View Journal Information

490 Cited References

Field: Source Titles	Record Count	% of 476	Bar Chart
CELL TRANSPLANTATION | 434 | 91.176% |
MEDICAL SCIENCE MONITOR | 41 | 8.613% |
FOOD SCIENCE AND BIOTECHNOLOGY | 1 | 0.210% |

Top 100 journals Romanian researchers publish* the most *(2006-2010 vs. 2011-2015)* *Articles, Reviews, Notes*

Source: InCites - Journal Citation Reports
<table>
<thead>
<tr>
<th>Title</th>
<th>JIF 2015</th>
<th>Best Category</th>
<th>Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVISTA DE CHIMIE</td>
<td>0.956</td>
<td>CHEMISTRY, MULTIDISCIPLINARY</td>
<td>Q3</td>
</tr>
<tr>
<td>ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY</td>
<td>0.811</td>
<td>DEVELOPMENTAL BIOLOGY</td>
<td>Q4</td>
</tr>
<tr>
<td>METALURGIA INTERNATIONAL</td>
<td>0.134</td>
<td>METALLURGY & METALLURGICAL ENGINEERING</td>
<td>Q4</td>
</tr>
<tr>
<td>ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL</td>
<td>1.008</td>
<td>ENVIRONMENTAL SCIENCES</td>
<td>Q4</td>
</tr>
<tr>
<td>JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY</td>
<td>0.734</td>
<td>ENVIRONMENTAL SCIENCES</td>
<td>Q4</td>
</tr>
<tr>
<td>FARMACIA</td>
<td>1.162</td>
<td>PHARMACOLOGY & PHARMACY</td>
<td>Q4</td>
</tr>
<tr>
<td>REVUE ROUMAINE DE CHIMIE</td>
<td>0.25</td>
<td>CHEMISTRY, MULTIDISCIPLINARY</td>
<td>Q4</td>
</tr>
<tr>
<td>ROMANIAN REPORTS IN PHYSICS</td>
<td>1.367</td>
<td>PHYSICS, MULTIDISCIPLINARY</td>
<td>Q2</td>
</tr>
<tr>
<td>TRANSYLVANIAN REVIEW</td>
<td>0.03</td>
<td>AREA STUDIES</td>
<td>Q4</td>
</tr>
<tr>
<td>ROMANIAN BIOTECHNOLOGICAL LETTERS</td>
<td>0.381</td>
<td>BIOTECHNOLOGY & APPLIED MICROBIOLOGY</td>
<td>Q4</td>
</tr>
<tr>
<td>MATERIALE PLASTICE</td>
<td>0.903</td>
<td>MATERIALS SCIENCE, MULTIDISCIPLINARY</td>
<td>Q4</td>
</tr>
<tr>
<td>JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS</td>
<td>0.383</td>
<td>MATERIALS SCIENCE, MULTIDISCIPLINARY</td>
<td>Q4</td>
</tr>
<tr>
<td>ROMANIAN JOURNAL OF PHYSICS</td>
<td>1.398</td>
<td>PHYSICS, MULTIDISCIPLINARY</td>
<td>Q2</td>
</tr>
<tr>
<td>DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES</td>
<td>0.756</td>
<td>MATERIALS SCIENCE, MULTIDISCIPLINARY</td>
<td>Q4</td>
</tr>
<tr>
<td>STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA</td>
<td>0.148</td>
<td>CHEMISTRY, MULTIDISCIPLINARY</td>
<td>Q4</td>
</tr>
</tbody>
</table>

Source: InCites - Journal Citation Reports
Top Romania OA producing institutions
2000-2015

Open Access Filters in WoS, JCR and InCites
OA journals Romanian researchers have published the most **2000-2015**
Web of Science
Integration with Journal Highly Cited Data

Discover Highly Cited & Hot Papers in Web of Science

This hot paper was published in the past two years and received enough citations in January/February 2015 to place it in the top 0.1% of papers in the academic field of Chemistry.

Data from Essential Science Indicators™

As of January/February 2015, this highly cited paper received enough citations to place it in the top 1% of the academic field of Chemistry based on a highly cited threshold for the field and publication year.

Data from Essential Science Indicators™

Top Papers by Research Field

Results List
Research Fields
Hide Visualization

Map View by Top / Hot / Highly Cited Papers

Total 22
Report View by Selection
Research Fields
Web of Science Documents
Title / Citations / Authors

Research Fields
Chemistry
Biology & Biomedicine
Physical Sciences
Social Sciences
Economics

Title / Citations / Authors

2,262,205
257,709
32,032
12,417
1,136
1,124

315,321
319,762
319,762
319,762
319,762
319,762

Economics
Chemistry
Biology & Biomedicine
Physical Sciences
Social Sciences
Economics

Title / Citations / Authors

2,262,205
257,709
32,032
12,417
1,136
1,124

315,321
319,762
319,762
319,762
319,762
319,762

Results List
Research Fields
Web of Science Documents
Title / Citations / Authors

Research Fields
Chemistry
Biology & Biomedicine
Physical Sciences
Social Sciences
Economics

Title / Citations / Authors

2,262,205
257,709
32,032
12,417
1,136
1,124

315,321
319,762
319,762
319,762
319,762
319,762

Thomson Reuters
Differences in average citation rates

Citation Impact can vary significantly across different disciplines and time periods.

Cannot be compared without some form of normalization to allow for the differences in fields and time.
The average number of citations varies significantly across disciplines and journals

NECESSITY: FIELD AND JOURNAL NORMALIZATION

Citations are dynamic; they grow over time and cannot be compared across different time periods. Also the “citation maturity” rate differs between fields

NECESSITY: TIME NORMALIZATION

Different publication types have different citation behaviour, an article does not statistically receive as much citations as a review

NECESSITY: DOCUMENT TYPE NORMALIZATION
How many citations should I expect from my papers?
How do my papers perform in my field?
How do other researchers perform in my field?

Document Type: Article

Category of the Journal: Economics

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Authors</th>
<th>Source</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Publication Date</th>
<th>Times Cited</th>
<th>Journal Expected Citations</th>
<th>Category Expected Citations</th>
<th>Journal Normalized Citation Impact</th>
<th>Normalized Citation Impact</th>
<th>Percentile in Subject Area</th>
<th>Journal Impact Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human capital creation, accumulation and management in Lithuania: The case of national and foreign capital enterprises</td>
<td>GRUNDEY, DAINORA; VARNAS, DARIUS</td>
<td>TRANSFORMATIONS IN BUSINESS & ECONOMICS</td>
<td>5</td>
<td>3</td>
<td>81-105</td>
<td>2006</td>
<td>15</td>
<td>4.31</td>
<td>12.14</td>
<td>3.48</td>
<td>1.24</td>
<td>20.53</td>
<td>0.26</td>
</tr>
</tbody>
</table>

15/12.14 = 1.24

Indicator of performance in the Economics category for this Article published in 2006:
If > 1, performs higher than average
If < 1, performs lower than average

Average of citations received by an article published in 2006 in the Economics category
Going Beyond the Journal Impact Factor

Normalization At Paper Level *(Journal)*

How do my papers perform in the journals I publish? How is my research perceived by the journals I publish in?

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Authors</th>
<th>Source</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Publication Date</th>
<th>Times Cited</th>
<th>Journal Expected Citations</th>
<th>Category Expected Citations</th>
<th>Journal Normalized Citation Impact</th>
<th>Normalized Citation Impact</th>
<th>Percentile in Subject Area</th>
<th>Journal Impact Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human capital creation, accumulation and management in Lithuania: The case of national and foreign capital enterprises</td>
<td>GRUNDEY; DAINORA; VARNAS, DARIUS</td>
<td>TRANSFORMATIONS IN BUSINESS & ECONOMICS</td>
<td>5</td>
<td>3</td>
<td>81-105</td>
<td>2006</td>
<td>15</td>
<td>4.31</td>
<td>12.14</td>
<td>3.48</td>
<td>1.24</td>
<td>20.53</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Indicator of performance of this Article in the Transformations in Business & Economics journal:

- If >1, performs higher than average
- If <1, performs lower than average
Comparisons can be made between any group of papers, defined by the powerful InCites set of filters.
Going Beyond the Journal Impact Factor
Article Level Metrics

Web of Science Documents

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Authors</th>
<th>Source</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Publication Date</th>
<th>Times Cited</th>
<th>Journal Expected Citations</th>
<th>Category Expected Citations</th>
<th>Journal Normalized Impact</th>
<th>Category Normalized Impact</th>
<th>Percentile in Subject Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC</td>
<td>Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel</td>
<td>PHYSICS LETTERS B</td>
<td>716</td>
<td>1</td>
<td>1-29</td>
<td>2012</td>
<td>3,462</td>
<td>26.23</td>
<td>12.72</td>
<td>132</td>
<td>272.23</td>
<td>0.01</td>
</tr>
<tr>
<td>Erlotinib in previously treated non-small-cell lung cancer</td>
<td>Shepherd, FA; Pereira, JR; Clulea, T; Tan, EH; Hirsh, V</td>
<td>NEW ENGLAND JOURNAL OF MEDICINE</td>
<td>353</td>
<td>2</td>
<td>123-132</td>
<td>2005</td>
<td>3,298</td>
<td>495.07</td>
<td>43.67</td>
<td>6.66</td>
<td>75.52</td>
<td>0.02</td>
</tr>
<tr>
<td>Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC</td>
<td>Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W</td>
<td>PHYSICS LETTERS B</td>
<td>716</td>
<td>1</td>
<td>30-61</td>
<td>2012</td>
<td>3,286</td>
<td>26.23</td>
<td>12.72</td>
<td>126.29</td>
<td>258.39</td>
<td>0.01</td>
</tr>
<tr>
<td>Planck 2013 results. XVI. Cosmological parameters</td>
<td>Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.</td>
<td>ASTRONOMY & ASTROPHYSICS</td>
<td>571</td>
<td>n/a</td>
<td>n/a</td>
<td>2014</td>
<td>3,149</td>
<td>11.4</td>
<td>7.54</td>
<td>75.26</td>
<td>417.53</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Source: InCites
In which journals do Babes Bolyai University from Cluj authors outperform the average journal citation rate? Journals by JNCl

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Citation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL EUROPEAN JOURNAL OF MATHEMATICS</td>
<td>3.41</td>
</tr>
<tr>
<td>PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY</td>
<td>3.18</td>
</tr>
<tr>
<td>PHYSICS LETTERS B</td>
<td>2.92</td>
</tr>
<tr>
<td>HEAT AND MASS TRANSFER</td>
<td>2.46</td>
</tr>
<tr>
<td>NANOTECHNOLOGY</td>
<td>2.39</td>
</tr>
</tbody>
</table>

Source: InCites
Local Journal Utilization Report

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Number of Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Review Letters</td>
<td>489</td>
</tr>
<tr>
<td>Physical Review D</td>
<td>463</td>
</tr>
<tr>
<td>Journal of the American Chemical Society</td>
<td>437</td>
</tr>
<tr>
<td>Journal of High Energy Physics</td>
<td>322</td>
</tr>
<tr>
<td>Physical Review B</td>
<td>322</td>
</tr>
</tbody>
</table>
Institutional – Journal Analysis

Local Journal Utilization Report

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL REVIEW D</td>
<td>631</td>
</tr>
<tr>
<td>PLOS ONE</td>
<td>418</td>
</tr>
<tr>
<td>INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER</td>
<td>319</td>
</tr>
<tr>
<td>STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA</td>
<td>306</td>
</tr>
<tr>
<td>JOURNAL OF HIGH ENERGY PHYSICS</td>
<td>257</td>
</tr>
</tbody>
</table>

Which journals are citing Babes Bolyai University from Cluj authors? Citing journals by Web of Science Documents and publication year of source document.

Source: InCites
Why endnote: Strong links with Web of science
Manuscript Match: Target the right journal

Enter your Manuscript Details:

*Title:
Development of a technique to measure the residual strength of woodworm infested timber.

*Abstract:
This paper presents a study of the residual strength of Pinus sylvestris, which has been subject to attack by the furniture beetle (Anobium punctatum). It is relatively easy to stop the infestation, but difficult to assess the structural soundness of the remaining timber. Removal and replacement of affected structural elements is usually difficult and required.

References:
16 citations from Group: From WoS will be included in this search.

Find Journals >
Manuscript Match: Target the right journal

Find the Best Fit Journals for your Manuscript

10 Journal Matches

<table>
<thead>
<tr>
<th>Match Score</th>
<th>JCR Impact Factor</th>
<th>Journal</th>
<th>Similar Articles</th>
<th>Was this helpful?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JOURNAL OF TESTING AND EVALUATION</td>
<td>0</td>
<td>YES</td>
</tr>
<tr>
<td>0.379</td>
<td>0.45</td>
<td>ECOLOGICAL MODELLING</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>2.321</td>
<td>2.725</td>
<td>JOURNAL OF MATERIALS IN CIVIL ENGINEERING</td>
<td>0</td>
<td>YES</td>
</tr>
<tr>
<td>1.296</td>
<td>1.54</td>
<td>EUROPEAN JOURNAL OF PLANT PATHOLOGY</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>1.49</td>
<td>1.649</td>
<td>PHYTOPATHOLOGY</td>
<td>0</td>
<td>YES</td>
</tr>
<tr>
<td>3.119</td>
<td>3.327</td>
<td>JOURNAL OF ENVIRONMENTAL MANAGEMENT</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>2.723</td>
<td>3.895</td>
<td>ANGEWANDTE CHEMIE-INTERNATIONAL EDITION</td>
<td>0</td>
<td>YES</td>
</tr>
<tr>
<td>0.901</td>
<td>0.928</td>
<td>PHYTOPARASITICA</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>11.261</td>
<td>12.06</td>
<td>ANNALS OF APPLIED BIOLOGY</td>
<td>0</td>
<td>YES</td>
</tr>
<tr>
<td>2.0</td>
<td>2.274</td>
<td>BIOPHYSICAL JOURNAL</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>3.972</td>
<td>3.874</td>
<td></td>
<td>0</td>
<td>YES</td>
</tr>
</tbody>
</table>
Manuscript Match: Target the right journal

Find the Best Fit Journals for your Manuscript

10 Journal Matches

<table>
<thead>
<tr>
<th>Match Score</th>
<th>JCR Impact Factor</th>
<th>Journal</th>
<th>Similar Articles</th>
<th>Was this helpful?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JOURNAL OF TESTING AND EVALUATION</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.379</td>
<td>0.45 2014 5 Year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JOURNAL OF TESTING AND EVALUATION</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.321</td>
<td>2.725 2014 5 Year</td>
<td>ECOLOGICAL MODELLING</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.296</td>
<td>1.54 2014 5 Year</td>
<td>JOURNAL OF MATERIALS IN CIVIL ENGINEERING</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td>1.549 2014 5 Year</td>
<td>EUROPEAN JOURNAL OF PLANT PATHOLOGY</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3.119</td>
<td>3.327 2014 5 Year</td>
<td>PHYTOPATHOLOGY</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2.723</td>
<td>3.895 2014 5 Year</td>
<td>JOURNAL OF ENVIRONMENTAL MANAGEMENT</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Top Keyword Rankings

- strength
- testing

JCR Category

- MATERIALS SCIENCE, CHARACTERIZATION & TESTING
- Rank in Category: 27/33
- Quartile in Category: Q4

Publisher

100 BARR HARBOUR DR, W CONSHOHOCKEN, PA 19428-2959

ISSN: 0090-3973
eISSN: 1945-7553
How Can I Improve My Journal?

1. Active recruitment of high-impact authors and articles
2. Offering better service to authors
3. Boosting the journal’s media profile
4. More careful article selection

Thomson Reuters can help.
Thank you!
Mulțumesc!
Ευχαριστούμε!

Questions and suggestions:

ts.tseditorialdev-acadgovt@thomsonreuters.com

Marko.zovko@thomsonreuters.com
Evangelia.lipitakis@thomsonreuters.com